Cortical axon trajectories and growth cone morphologies in fetuses of acallosal mouse strains.

نویسندگان

  • H S Ozaki
  • D Wahlsten
چکیده

Hereditary absence of the corpus callosum (CC) provides an ideal experiment of nature for exploring mechanisms of axon guidance. In this study the prenatal development of CC axons in the acallosal mouse strains BALB/cWah1 and 129/ReJ or J was compared with normal hybrid mice by using the lipophilic dyes DiI and DiA. A few I/LnJ mice were also examined. The time of emergence and growth rate of CC axons from four cortical regions (frontal, parietal, temporal, occipital) were normal in acallosal strains. Their CC axons arrived at midplane on schedule but then often looped back to form the longitudinal Probst bundle. The frequency of formation of the Probst bundle was highest for axons from frontal cortex, which arrived at midplane first, and lowest for occipital axons, which arrived last. Once a few CC axons found a path to the other side via the hippocampal commissure, those that arrived later then crossed relatively normally. Some axons from the Probst bundle also managed to traverse midline in this manner. When no CC axons crossed, almost all of them entered the Probst bundle and eventually left it within a few hours to proceed in the ipsilateral white matter, never turning back toward midplane. Growth cones approaching midplane ipsilaterally and those that had crossed midline and entered contralateral white matter, as well as CC axons in the Probst bundle, expressed a normal range of size and complexity. These results demonstrate that the problem with callosal agenesis resides not in the cells of origin or the axons or growth cones themselves but in the substrates of axon guidance at the midsagittal plane.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prenatal formation of the normal mouse corpus callosum: a quantitative study with carbocyanine dyes.

Judgment of abnormalities in fetal cortical axon development is more sensitive when a good standard of normal ontogeny is established. The recent availability of postmortem tract tracing methods has greatly improved the observation of axon extension and growth cone morphology in mouse fetuses, which allows much stronger statements about the timing of crucial steps in the formation of the corpus...

متن کامل

Retarded growth of the medial septum: a major gene effect in acallosal mice.

Absence of the corpus callosum is a hereditary brain defect that appears with varying severity in four inbred mouse strains and is the result of more than one major genetic locus. If relatively few, perhaps two or three, loci are involved in the prenatal ontogeny of the abnormal corpus callosum, it should be possible to identify a distinct morphological process which shows a major gene effect. ...

متن کامل

Common mechanisms underlying growth cone guidance and axon branching.

During development, growth cones direct growing axons into appropriate targets. However, in some cortical pathways target innervation occurs through the development of collateral branches that extend interstitially from the axon shaft. How do such branches form? Direct observations of living cortical brain slices revealed that growth cones of callosal axons pause for many hours beneath their co...

متن کامل

The role of microtubules in growth cone turning at substrate boundaries

To understand the role of microtubules in growth cone turning, we observed fluorescently labeled microtubules in neurons as they encountered a substrate boundary. Neurons growing on a laminin-rich substrate avoided growing onto collagen type IV. Turning growth cones assumed heterogeneous morphologies and behaviors that depended primarily in their extent of adhesion to the substrate. We grouped ...

متن کامل

Netrin-1 and semaphorin 3A promote or inhibit cortical axon branching, respectively, by reorganization of the cytoskeleton.

In many CNS pathways, target innervation occurs by axon branching rather than extension of the primary growth cone into targets. To investigate mechanisms of branch formation, we studied the effects of attractive and inhibitory guidance cues on cortical axon branching. We found that netrin-1, which attracts cortical axons, and FGF-2 increased branching by >50%, whereas semaphorin 3A (Sema3A), w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of comparative neurology

دوره 336 4  شماره 

صفحات  -

تاریخ انتشار 1993